SYNTHESIS OF TRISUBSTITUTED 4H-1,2,4-OXADIAZINES^{1),3)}

Shonosuke ZEN* and Kazuho HARADA

School of Pharmaceutical Sciences, Kitasato University

Shirokane, Minato-ku, Tokyo 108

The derivatives of 4H-1,2,4-oxadiazine, a new class of six-membered heterocycles, were synthesized through the reactions of B-diketones with aliphatic nitro compounds and acetyl chloride, and also of azirines with nitrile oxides. A reaction mechanism is proposed.

In this communication we wish to describe an one-step synthesis of a new heterocyclic compound, 4H-1,2,4-oxadiazine. When aliphatic nitro compounds(1) and acetyl chloride were allowed to react⁴⁾ with β -diketones(3), e.g. dibenzoylmethane, 5-benzoyl-3,6-disubstituted-4H-1,2,4-oxadiazine(6) was synthesized as follows: In a typical experiment, di-p-toluoylmethane $\frac{5}{3}$ (3b) $\frac{2}{516}$ mg(2.0 mmol) was added to a solution of p-tolylnitromethane $^{6)}$ (1b) 602 mg(4.0 mmol) and acetyl chloride 0.29 ml(4.1 mmol) in N,N-dimethylacetamide(DMA) with three molar amount of sodium methoxide. The mixture was stirred at 80-85°C overnight. After neutralization with 1N hydrochloric acid and benzene extraction, further purification by chromatography of silica gel(benzene-ethyl acetate 20:1) were carried out. 5-p-Toluoy1-3,6-di-p-toly1-4H-1,2,4-oxadiazine(6c) was obtained as colorless needles in a yield of 41%, which gave a singl spot on TLC; 6c: mp 238-241°C(from hexane-ethyl acetate), $IR(KBr)v_{max}cm^{-1}$: 3260(NH), 1650(C=0); $^{1}H-$ NMR(CDCl₃) δ : 7.42(NH); and the N-CH₃ derivative(7c) of δ c: mp 213-214°C, IR(KBr) ν max cm⁻¹: ν NH(disappeared), 1660(C=0); H-NMR(CDCl₃) δ : 3.45(3H, N-CH₃). This procedure was applied to the following aliphatic nitro analogs(1) and β -diketones(3), i.e. 1: phenylnitromethane (1a) and p-chlorophenylnitromethane (1e); 3: dibenzoylmethane (3a). The oxadiazines (6a-6e) in question and their N-methyl derivatives (7a-7d) were subsequently synthesized respectively. The results of extensive experiments are summarized in Table 1.

In order to confirm the reaction pathway, directly, a reaction of nitrile oxide with azirine was examined; both nitrile oxide and azirine were considered as the reaction-intermediates for further reactions. An equimolar reaction of 2-benzoyl-3-phenyl-2H-azirine(5a, 9) $R^2=R^3=H$) with p-tolunitrile oxide(2b, 10) $R^1=CH_3$) in DMA in the presence of 1N sodium methoxide proceeded easily to give the corresponding 5-benzoyl-6-phenyl-3-p-tolyl-4H-1,2,4-oxadiazine(6d), mp 188-190°C. This procedure was extensively applicable to the reaction of other 2 with 5. The results were also shown in Table 1.

These results support the mechanism shown in Chart 1. As reported in our previous papers, $^{4)}$ the nitrile oxide(2) are generated by the 0-acylation of nitro compounds(1) with acetyl chloride in DMA. Initially 2 (in situ) reacts with 3 to form an adduct $\frac{4}{4}$

Table I. Yields, Melting Points, IR and ¹H-NMR

Data of 4H-1,2,4-0xadiazine Derivatives

(6: R= H; 7: R= CH₃)

(p)
$$R^{1}$$
-C6H4 $\prod_{N=0}^{R} COC_{6H4}$ - R^{2} (p) C_{6H4} - R^{3} (p)

Compd.	R ¹	R ²	R ³	Yield(%)	mp(°C)	$IR(cm^{-1})$		¹ H-NMR	
						νNΗ	νC=0	NH	N-CH3
6a	Н	Н	Н	16 — (20) ^{b)}	182-183	3210	1650	7.60	
6b	CH ₃	Н	CH ₃	28 (18) ^{a)} —	229-230.5	3240	1650	7.53	
6€c	CH ₃	CH ₃	CH ₃	41 —	238-241	3260	1650	7.42	-
6d ≈	CH ₃	Н	Н	- (13) ^{a)} (23) ^{b)}	188-190	3240	1640	7.55	
6e	C1	Н	Н	- (5) b)	176-178	3260	1660	7.50	
7a ≈	Н	Н	Н	92 ^{c)} — —	153-155		1660		3.47
7b	CH3	Н	CH ₃	83 ^{c)} — —	176-178		1660		3.45
7c	снз	снз	CH ₃	58 ^{c)} — —	213-214		1660		3.45
7d ∼	снз	Н	Н	76 ^{c)} — —	155-157		1660		3.47

- a) also prepared directly from isolated nitrile oxide(2b) and azirines(5a or 5b).
- b) also prepared from azirine(5a) with the reaction mixture of 1 and acetyl chloride.
- c) yield of $\frac{7}{2}$ from $\frac{6}{2}$ through N-methylation.

COC6 H₄-R²(p)
$$\approx$$
 1, \approx 2, \approx 3, \approx 4, \approx 6 \approx 6, \approx 6 \approx 7, \approx 7, \approx 7, \approx 8, \approx 9, \approx 10, \approx 10

Chart 1

(p)
$$R^3$$
-C6H4CH2NO2 $\frac{CH_3COCI, CH_3ONa}{in DMA}$ (p) R^3 -C6H4C=N⁺-O⁻ $\frac{3}{2}$

(p) R^3 -C6H4 $\frac{COC_6H_4-R^2(p)}{N_0}$ $\frac{COC_6H_4-R^2(p)}{C6H_4-R^2(p)}$ $\frac{COC_6H_4-R^2(p)}{N_0}$ $\frac{COC_6H_4-R^2(p)}{N_0}$ $\frac{5}{2}$

(p) R^1 -C6H4C=N⁺-O⁻ $\frac{2}{2}$ (p) R^1 -C6H4C= R^2 (p) R^2 -C6H4CO2H R^2 (p) R^3 -C6H4 R^2 (p) R^3 -C6H4C= R^2 (p) R^3 -C6H4C= R^2 (p) R^3 -C6H4C= R^3 R^3 -R6H4C= R^3 -C6H4C= R^3 -R6H4C= R

by 1,3-cycloaddition reaction which gives azirine(5) by elimination of benzoic acid. Furthermore, 5 reacts with an other 2 to furnish the expected cycloadduct 8. 11) This fused aziridine adduct 8 undergoes ring expansion through participation of the carbon-nitrogen bond of aziridine ring, of which cleavage induces a rearrangement of methine proton at C-5 to the N-4 position by nucleophilic methoxide ion. Finally, the 4H-oxadiazine(6) is given. 12)

Chemical evidence in support of structure 6 includes the following reactions: Ring opening of 6a occurred by Raney Ni(T-1) under hydrogen at atomospheric pressure in MeOH to lead an iminomethyl derivative(9) of α -aminodibenzoylmethane as the main product, and after acid-hydrolysis by 1N hydrochloric acid, the resulted product of 9 proved identical with an authentic sample of N-benzoyl-dibenzoylmethane 13 (10a) which was synthesized independently. In the same manner, hydrogenation and further hydrolysis of N-methyl derivative(7) also gave the corresponding reaction products, 9b, mp 211-213°C(methanol-hexane), and 10b, mp 130-132°C(methanol), respectively. These products were identified as expected products by elemental analysis, as well as ir, nmr, and MS analyses (Chart 2).

A further detailed study on the synthesis of new member of above-heterocycles is now in progress.

Chart 2

C6H5
$$\stackrel{R}{\longrightarrow}$$
 COC6H5 $\stackrel{Raney \ N;}{\longrightarrow}$ C6H5 $\stackrel{R}{\longrightarrow}$ COC6H5 $\stackrel{H^+(H_2O)}{\longrightarrow}$ C6H5CONR-CH(COC6H5)2

 $\stackrel{6}{\longrightarrow}$ R = H

 $\stackrel{7}{\longrightarrow}$ Pa : R = CH3

 $\stackrel{7}{\longrightarrow}$ Pb : R = CH3

 $\stackrel{10}{\longrightarrow}$ 10b : R=CH3

References

1) Abstracted in part from the Ph.D. thesis presented to Kitasato University by Kazuho Harada.

The Synthetic Reaction of Aliphatic Nitro Compounds XXI; Presented in part at the 14th Congress of Heterocyclic Chemistry, Tokyo, September 1981, Abstr. p. 499; Part XX of this series: K. Harada, H. Koyama, and S. Zen, Nippon Kagaku Kaishi, in press (1982).

- 2) T. Sasaki and T. Yoshioka, Bull. Chem. Soc. Jpn., 42, 556(1969); P. Rajagopalan and C.N. Talaty, J. Am. Chem. Soc., 88, 5048(1966); K. Takacs, K. Harsanyi, P. Kolonits and K.I. Ajzert, Chem. Ber., 108, 1911(1975); R.L. McKee, "The Chemistry of Heterocyclic Compounds ——Five- and Six-membered Compounds with Nitrogen and Oxygen" ed. by R.H. Wiley, Interscience Publishers, New York, 1962, pp. 447-460.
- 3) Melting points are uncorrected; $^{1}\mathrm{H-NMR}$ spectra were measured using TMS as an internal standard.
- 4) E. Kaji, K. Harada, and S. Zen, Chem. Pharm. Bull., <u>26</u>, 3254(1978); K. Harada, E. Kaji, and S. Zen, ibid, <u>28</u>, 3296(1980); K. Harada, E. Kaji, and S. Zen, Nippon Kagaku Kaishi, <u>1981</u>, 1195; S. Zen and K. Harada, Chem. Pharm. Bull., <u>30</u>, 366(1982).
- 5) A. Sieglitz and O. Horn, Chem. Ber., <u>84</u>, 607(1951).
- 6) N. Kornblum, R.A. Smiley, R.K. Blackwood, and D.C. Iffland, J. Am. Chem. Soc., <u>77</u>, 6269(1955).
- 7) N. Kornblum, H.O. Larson, R.K. Blackwood, D.C. Mooherry, E.P. Olivets, and G.E. Garakam, J. Am. Chem. Soc., 78, 1497(1956).
- 8) Methylation of 6c by methyl iodide gave the corresponding N-methyl derivative (7c). Similarly 7d (Table 1) from 6d.
- 9) E.F. Ullman and B. Singh, J. Am. Chem. Soc., <u>88</u>, 1844(1966).
- 10) G. Barbaro, A. Battaglia, and A. Dondoni, J. Chem. Soc., B, <u>1970</u>, 588; A. Quilico "Five and Six-membered Compounds with Nitrogen and Oxygen" ed. by R.H. Wiley, Interscience, New York, 1962, p. 21.
- 11) N.S. Narasimhan, H. Heimgartner, H.J. Hansen, and H. Schmid, Helv. Chim. Acta., <u>56</u>, 1351(1973); T.C. Gallagher and R.C. Storr, Tetrahedron Lett., <u>1981</u>, 2909.
- 12) In a similar study, Nair(Tetrahedron Lett., 1971, 4831) reported that azirine(i) reacts with 2,4,6-trimethylbenzonitrile oxide(ii) in ether at 0°C to furnish carbodiimide(iii) exclusively.

This reaction is closely related to the method reported in this communication. Whereby, however, 4H-oxadiazine derivatives are obtained instead.

13) D.Y. Curtin and M.L. Poutsma, J. Am. Chem. Soc., <u>84</u>, 4887(1962).

(Received July 28, 1982)